作者单位
摘要
电子科技大学 信息与软件工程学院,成都 610054
该文针对新工科软件专业图像分类任务的新生项目课程存在的3个问题进行分析设计,包括Python语言不熟悉,图像分类入门时间短以及实操环境学生难以搭建,提出了基于百度的AI Studio平台和以PaddleHub预训练模型的应用为中心的课程教学设计,包括融合线性代数的实际应用,预训练模型fine-tune实践以及组队分工线上线下结合学习等,后续可以改进为由学生自主选择设计识别任务内容。该课程设计内容有助于学生奠定工程基础,提高专业技能,培养团队合作能力,最终达到增强专业兴趣和专业信心的课程设计目标。
新生项目课 图像分类 迁移训练 数据增强 freshman project course image classification migration training data enhancement 
实验科学与技术
2023, 21(4): 49
作者单位
摘要
1 大连理工大学 电气工程学院, 辽宁 大连 116024
2 大连理工大学 电子信息与电气工程学部, 辽宁 大连 116024
针对可穿戴设备电源的供电及续航问题, 采用了筒壳结构的压电能量收集器。探究了可穿戴筒壳结构压电能量收集器俘能的本质, 并提出结构优化设计方案。首先指出筒壳结构的承载能力和初始能量与厚度成正比, 且随着跨度的增大而减小; 其次通过有限元仿真研究了基底和聚偏二氟乙烯(PVDF)压电薄膜尺寸与应力、应变的关系, 指出PVDF的尺寸应尽可能与应力、应变较大的区域相符合, 没必要完全覆盖基底, 并给出优化模型; 最后通过实验验证了厚度、跨度和曲率半径优化尺寸的合理性, 综合考虑了人体穿戴的舒适度。优化设计方案中, 筒壳结构的厚为125~150 μm, 跨度为19~22.2 mm, 曲率半径为10~15 mm, 输出电压可达13~18 V。
可穿戴 筒壳结构 压电能量收集 聚偏二氟乙烯(PVDF) 优化 wearable cylindrical shell piezoelectric energy harvesting polyvinylidene fluoride(PVDF) optimization 
压电与声光
2021, 43(1): 39
作者单位
摘要
复旦大学通信科学与工程系电磁波信息科学教育部重点实验室,上海 200433
为了提高传统点对点单输入单输出(SISO)可见光系统的传输速率,提出了多输入多输出 (MIMO)的可见光系统。考虑到接收端系统复杂度的问题,多输入单输出 (MISO)可见光通信系统则更受关注。本文研究了基于脉冲幅度调制 (PAM)的 MISO可见光通信系统,并通过实验证明该系统在特定场景中的运用优势。此外,针对可见光通信系统中 LED光源、功率放大器等关键器件存在非线性效应,本文基于两发一收的 2×1 MISO可见光通信系统,设计了两路低阶 PAM信号在光域叠加产生高阶 PAM信号的新型的等概率编码映射方案,并通过 RGB-LED的红灯完成净比特速率 700 Mb/s的传输实验系统验证,证明了此方案在实际中的可行性及优越性。
光通信 可见光通信 多输入单输出 等概率编码 脉冲幅度调制 optical communications visible light communication multiple input single output (MISO) equal 
光电工程
2019, 46(5): 180306
Author Affiliations
Abstract
State Key Lab of ASIC, Department of Communication Science and Engineering, Fudan University, Shanghai 200433, China
In this Letter, we propose a novel constellation-shaping carrier-less amplitude and phase (CAP) modulation scheme to alleviate the systematic nonlinearity in visible light communication (VLC) systems. A simple geometric transformation shaping method is employed to convert the normal square lattice constellation into multiple circular constellations. The feasibility and performance are investigated and experimentally demonstrated by a 1.25 Gb/s CAP-modulated VLC system. The results indicate that the circular constellation has better resistance to systematic nonlinearity compared with a rectangular constellation. The dynamic range of input signal peak-to-peak values promotes 20% at a low bias voltage nonlinear area and 50% at a high bias voltage nonlinear area. To the best of our knowledge, this is the first time constellation-shaping CAP has ever been reported in indoor high data rate VLC systems.
060.4080 Modulation 060.2605 Free-space optical communication 
Chinese Optics Letters
2017, 15(3): 030602
Author Affiliations
Abstract
Department of Communication Science and Engineering, and Key Laboratory for Information Science of Electromagnetic Waves (MoE), Fudan University, Shanghai 200433, China
High-speed multi-user access with high spectral efficiency is one of the key challenges for band-limited visible light communication (VLC) systems. In this paper, we propose a novel scheme for effective multiple-access VLC systems based on multi-band, Nyquist-filtered pulse amplitude modulation (PAM)-8 modulation. Within this scenario, the spectral efficiency can be improved from 1.5 to 2.73 b/s/Hz by implementing an appropriate Nyquist filter to suppress spectral bandwidth. We experimentally demonstrate a multi-band VLC system at 1.2 Gb/s after 1 m indoor free space transmission. The system performances have also been thoroughly investigated for different sub-band numbers, utilizing a rectangular filter in the frequency domain and a Nyquist filter based on square root raised cosine. The results show that the Nyquist-filtered PAM-8 signal can outperform a rectangular filtered signal. The maximum improvement of system capacity is up to 1.67 times for the Nyquist-filtered multi-band system. The results clearly show the advantage and feasibility of multi-band Nyquist PAM for high-speed multiple-access VLC systems.
(060.0060) Fiber optics and optical communications (060.2605) Free-space optical communication (230.3670) Light-emitting diodes. 
Photonics Research
2017, 5(6): 06000588
Author Affiliations
Abstract
Key Laboratory for Information Science of Electromagnetic Waves (MoE), Department of Communication Science and Engineering, Fudan University, Shanghai 200433, China
Light-emitting diode (LED)-based visible light communication (VLC) has become a potential candidate for nextgeneration ultra-high-speed indoor wireless communication. In this paper, four special-shaped 8-quadrature amplitude modulation (QAM) constellations are investigated in a single-carrier VLC system. It is numerically verified and experimentally demonstrated that circular (7,1) shows obvious superiority in the performance of the dynamic range of signal voltage peak-to-peak (vpp) value and bit error rate (BER). Next best is rectangular, followed by triangular; circular (4,4) has the worst performance. A data rate of 1.515 Gbit/s is successfully achieved by circular (7,1) employing a red chip LED over 0.5 m indoor free space transmission below a BER threshold of 3.8 × 10?3. Compared with circular (4,4), the traditional 8-QAM constellation, circular (7,1) provides a wider dynamic range of signal vpp, a higher data rate, and a longer transmission distance. To the best of our knowledge, this is the first investigation into the performance differences of special-shaped 8-QAM constellations in a highspeed, single-carrier VLC system, and the results comprehensively demonstrate that circular (7,1) is the optimal option.
Free-space optical communication Free-space optical communication Optical communications Optical communications Light-emitting diodes Light-emitting diodes 
Photonics Research
2016, 4(6): 06000249
作者单位
摘要
1 中国工程物理研究院 上海激光等离子体研究所,上海 201800
2 郑州交通职业学院 机电工程系,郑州 450062
结合快点火靶丸预压缩涉及的基本物理问题,分析了驱动激光脉冲波形对材料压缩过程的影响,并利用辐射流体力学程序MULTI模拟了不同激光波形下的材料压缩情况。结果表明:通过调节激光脉冲波形,优化激光初始强度、激光强度开始上升时间和上升速度,控制压缩过程中的熵增,可以获得更高的材料压缩度。
惯性约束聚变 快点火 材料压缩 激光脉冲波形 数值模拟 inertial confinement fusion fast ignition fuel compression laser pulse shape numerical simulation 
强激光与粒子束
2009, 21(6): 859

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!